ADIC: An Extensible Automatic Differentiation Tool for ANSI-C*

Christian Bischof and Lucas Roh
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439 USA
{bischof,roh}@mcs.anl.gov

Andrew Mauer-Oats†
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61802
mauer@math.uiuc.edu

Argonne Preprint ANL/MCS-P626-1196 (revised May 1997)
To appear in Software: Practice and Experience

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Orders L25935D and L64948D, and by the National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.

†The work of this author was performed while he was a student research associate with Argonne National Laboratory.
Abstract. In scientific computing, we often require the derivatives $\frac{\partial f}{\partial x}$ of a function f expressed as a program with respect to some input parameter(s) x, say. Automatic differentiation (AD) techniques augment the program with derivative computation by applying the chain rule of calculus to elementary operations in an automated fashion. This article introduces ADIC (Automatic Differentiation of C), a new AD tool for ANSI-C programs. ADIC is currently the only tool for ANSI-C that employs a source-to-source program transformation approach; that is, it takes a C code and produces a new C code that computes the original results as well as the derivatives.

We first present ADIC “by example” to illustrate the functionality and ease of use of ADIC and then describe in detail the architecture of ADIC. ADIC incorporates a modular design that provides a foundation for both rapid prototyping of better AD algorithms and their sharing across AD tools for different languages. A component architecture called AIF (Automatic Differentiation Intermediate Form) separates core AD concepts from their language-specific implementation and allows the development of generic AD modules that can be reused directly in other AIF-based AD tools. The language-specific ADIC front-end and back-end canonicalize C programs to make them fit for semantic augmentation and manage, for example, the association of a program variable with its derivative object. We also report on applications of ADIC to a semiconductor device simulator, 3-D CFD grid generator, vehicle simulator, and neural network code.

Key words. Automatic differentiation, derivatives, gradient, Jacobian, Hessian, Sage++, compiler, source transformation, semantic augmentation, AIF, ADIC.
1 Introduction

Given a complex computational model of physical phenomena (such as interconnect properties in semiconductors, air flow around a wing, or chemical reactions in the atmosphere), we are often interested in sensitivity analysis, in other words, assessing the impact of changes in model input values on the model outputs. One way to do this systematically is to compute the derivatives of output variables with respect to input variables. If \(y \) is an output variable of the model, and \(x \) an input variable, the availability of \(\partial y / \partial x \) allows us to predict to first order the impact that changes in \(x \) will have on \(y \). Thus, derivative information can be used to test the robustness of the model or to adjust, typically with the help of numerical optimization algorithms, certain model parameters so that the model agrees with experimental results (this is typically called parameter identification or data assimilation). Derivatives are also essential in other areas of nonlinear modeling, for example in nonlinear equation solving and design optimization [1, 4, 26].

In general, given a code \(C \) that computes a function \(f : x \in \mathbb{R}^n \mapsto y \in \mathbb{R}^m \) with \(n \) inputs and \(m \) outputs, we may then require the derivatives of some of the outputs \(y \) with respect to some of the inputs \(x \). Thus, we would like to create from \(C \) a new code \(C' \) that computes \(f' = \partial y / \partial x \). Ideally, \(C' \) should be accurate and fast and should require little development time.

The derivative code \(C' \) can be produced in a number of different ways. It can be developed by hand, which typically is laborious and error prone. On the other hand, a skilled user can take advantage of domain-specific knowledge, which can result in very efficient code. \(C' \) can also be developed with the help of a symbolic mathematics package such as Mathematica, Maple, or Reduce. While this approach works well for domain-specific languages (see, e.g., [31, 42]), it is not directly applicable to large computer codes in languages such as Fortran 77 or C. Another alternative, divided differences, does not directly produce a derivative code but rather approximates the derivatives by evaluating \(f \) at multiple input points. For the simplest case, one-sided differences, the derivative of \(f \) with respect to the \(i \)th input \(x_i \) is approximated by

\[
\frac{\partial f}{\partial x_i} \approx \frac{f(x + \Delta x_i) - f(x)}{\pm \Delta x_i}.
\]

The main drawback of the divided differences technique is that inherent errors make it difficult to determine the accuracy of the approximation [30, 44]. In addition, the computation of \(n \) partial derivatives requires \(n + 1 \) function evaluations.

Recently, automatic differentiation (AD) has been gaining popularity with the emergence of software tools such as ADIFOR [11, 12], ODYSSEE [48], or ADOL-C [34]. Given a code \(C \), these tools can automatically produce an accurate and reasonably fast derivative code \(C' \). AD works by systematically applying the chain rule of differential calculus at the elementary operator level and thus does not incur the errors inherent in divided difference
approximations. Also, if C changes, which is often the case during code development, an up-to-date C' is produced by simply rerunning the tools. An overview of currently available AD tools can be found at http://www.mcs.anl.gov/Projects/autodiff/AD_Tools, as well as in the articles in [8].

AD technology is still in its infancy; the development of better algorithms for exploiting chain rule associativity and their incorporation into AD tools promise significant improvement in the performance of generated derivative codes. This article focuses on issues arising in the design of an extensible AD tool that

- fully supports the ANSI-C language,
- lays the foundation for the rapid assimilation of algorithmic improvements, and
- enables code reuse across different AD tools.

ADIC (Automatic Differentiation of C) is our AD tool that addresses these design issues. A prototype of ADIC was successfully applied to CSCMDO [20], a 3-D volume grid generator specifically designed for use in multidisciplinary design optimization. The current ADIC has been employed to generate derivative-enhanced versions of semiconductor device simulators, a 3-D motion control simulator, and a neural network model. These applications range in size from several hundred to more than 10,000 lines of code. The ADIC web page at http://www.mcs.anl.gov/adic provides information about obtaining ADIC.

In the following paragraphs, we set the stage for the remainder of the article by briefly reviewing the algorithmic underpinnings of AD, highlighting the salient points of implementation strategies for AD, and summarizing the novel aspects of our work on ADIC.

1.1 The Algorithmic Aspect of Automatic Differentiation

We first define certain terms that are commonly used in the automatic differentiation context:

- **Independent variables** are program input variables with respect to which derivatives are desired.

- **Dependent variables** are output variables whose derivatives are desired.

- A **derivative object** represents some derivative information, such as a vector of partial derivatives $(\partial z/\partial x_1, \ldots, \partial z/\partial x_n)$ of some variable z with respect to a vector x.

- Any program variable with which a derivative object is associated is called an **active variable**. A conservative strategy is to consider all program variables to be active, but only variables that are on a computational path from an independent to a dependent variable need to be active.
The execution of any program, no matter how complex, boils down to a series of elementary operations such as an arithmetic operator (e.g., add, multiply) or an intrinsic function (e.g., sine, cosine). Thus, a particular set of input values to the program induces an execution path that transforms input values into the output values. The derivatives are computed by repeatedly applying the chain rule to combine the local partial derivatives of each executed operator.

For example, let \(a \) and \(b \) be intermediate values that depend on some independent variables \(x \), and let \(g = f(a, b) \). Then, by using the chain rule, \(\nabla_x g \), the derivative of \(g \) with respect to \(x \), is computed as

\[
g = f(a, b) \Rightarrow \nabla_x g = \frac{\partial f}{\partial a} \nabla_x a + \frac{\partial f}{\partial b} \nabla_x b, \tag{1}
\]

and a familiar incarnation is the product rule

\[
g = a \cdot b \Rightarrow \nabla_x g = b \nabla_x a + a \nabla_x b. \tag{2}
\]

Note that this approach can easily be generalized to compute derivatives of arbitrary order [2, 7, 15].

The chain rule is associative. If we are interested in computing \(f(g(x)) \), we could, for example, explicitly compute \(df/dg \) and \(dg/dx \) and multiply the two derivatives (they will be matrices in general), or first compute \(dg/dx \) and then directly \(df/dx \) by exploiting the linearity of differentiation. Typically, there are many ways to combine derivatives, and each different accumulation path may exhibit different time and memory complexity. The classic forward mode of automatic differentiation accumulates derivatives as the computation proceeds from the inputs to outputs. Another classic method, the reverse mode, accumulates the derivatives in the opposite direction—from the outputs to inputs. The reverse mode requires a reversal of the order of the original program execution, but is attractive when one desires the computation of the derivatives of few output values with respect to many input values. These issues are discussed in more detail in [32, 35, 46]. For general problems, the choice of a good strategy depends on the time and memory constraints as well as the particular program structure. The development of heuristics to exploit algorithmic and program structure, and hence to better exploit chain rule associativity, is the subject of current research (see, for example, [18, 19, 21, 27, 33, 36]).

1.2 Implementation Strategies for Automatic Differentiation Tools

Unlike compilers or most program transformation systems, AD tools modify the semantics of the underlying program by inserting, in a rule-based fashion, code for computing derivatives. In this section, we give a brief overview of two main approaches taken by automatic differentiation tools to implement this semantic augmentation process.
Operator overloading: This approach overloads the basic arithmetic operators and intrinsic calls with special routines that carry out the propagation of derivatives in addition to the original operations or, alternatively, record information that allows a subsequent code reversal. The source program itself is only minimally changed, and most of the complexity of derivative computations is embedded in a library. The operator overloading mechanism properly invokes these library routines as the execution proceeds. This approach works with languages that support operator overloading such as C++ or Fortran 90.\(^1\) Despite the elegance of this approach, its major disadvantage is the inability to exploit chain rule associativity because of the lack of context inherent in operator overloading [12, 19]. In addition, some overhead is associated with the operator overloading itself. Examples of this approach are ADOL-C [34], ADOL-F [49], ADOL1 [45], FADBAD [6], and OPTIMA [5, 24].

Source-to-source transformation: This approach employs compiler techniques to transform a program source code into a new source code that explicitly carries out the derivative computation; hence, it is applicable to any language. The advantages of this approach are that the entire program context is available at compile time to exploit chain rule associativity and to gather information that could tighten conservative assumptions underlying AD algorithms. The disadvantage is the major effort required in implementing such a tool. ADIC, ADIFOR [11, 12], ODYSSEE [48], and TANC [29] are examples of this approach.

1.3 What’s New in ADIC

Our goal was to build an efficient AD tool for ANSI-C geared primarily toward the computation of first- and second-order derivatives. For efficiency, we employ the source transformation approach.

Figure 1 shows the logical stages of such a tool for AD.

- **Parsing:** The source is parsed into an intermediate representation.
- **Canonicalization:** The intermediate format is transformed into a semantically equivalent form more suitable for automatic differentiation.
- **Analysis (optional):** This stage may, for example, determine which variables are active and hence require associated derivatives (versus making the conservative assumption that all variable have this requirement).
- **Derivative Augmentation:** The strategy for applying the chain rule is determined and the source augmented with derivative computations.

\(^1\)It is possible to take an ANSI-C program and compile it as a C++ program. However, since ANSI-C is not a strict subset of C++, this approach is not infallible.
Optimization (optional): For example, certain low-level computational kernels may be instantiated in an architecture-specific fashion. Traditional scalar and loop optimizations may also be performed here.

Unparsing: The transformed source is unparsed back into legal code in the original language.

Most existing AD tools operate on Fortran 77 or Fortran 90 programs. However, ANSI-C is also widely used in scientific and engineering applications, and thus robust AD tools that handle ANSI-C programs are needed. Two main features distinguish ADIC:

- It is the first source transformation-based AD tool for ANSI-C. Developing a source transformation-based tool for C is challenging because a number of issues arise (for example, pointers and dynamically allocated memory) that do not occur in Fortran 77.
- It employs a component architecture that insulates the derivative augmentation stage from the peculiarities of a particular input language and allows for the development and incorporation of language-independent “plug-in” AD modules. This is achieved through AIF (automatic differentiation intermediate form), which provides a language-independent abstraction of program fragments, as well as abstractions for common AD concepts.
While we are at this point primarily interested in derivatives, we note that ADIC actually provides an infrastructure for arbitrary semantic augmentation of ANSI-C programs, for example, with interval arithmetic.

The rest of this article is organized as follows. The next section gives a short example that illustrates automatic differentiation in general, as well as ADIC’s particular approach. Section 3 discusses in detail the issues that arise when one wants to associate additional information and computation with an ANSI-C program, and how ANSI-C code needs to be canonicalized to that end. In Section 4 we describe the AIF component architecture as well as the philosophy behind it. Four applications that used ADIC to compute first-order derivatives are presented in Section 5. In Section 6, we summarize the benefits of ADIC, and we mention areas for future development.

2 ADIC in a Nutshell

ADIC aims to provide AD functionality for general ANSI-C programs. ADIC supports ANSI-C language constructs including arbitrary calling sequences, data structures (e.g., unions), pointers (e.g., function pointers and pointer arithmetic), and casts (e.g., floats to nonfloats and vice versa). In this section, we provide an overview of ADIC processing with an example.

2.1 An Example

ADIC can be used as a “black box” to generate derivative code with minimal human effort. As an illustration, Figure 2 shows the listing of a simple function func contained in a file func.c that we would like to differentiate.

The invocation of ADIC with the command

```
% adic -d gradient func.c
```

leads to the generation of file func.ad.c shown in Figures 3 and 4. The new function ad_func generated by ADIC computes first-order derivatives in addition to the values originally computed.

Derivative Objects. We note that all double-precision variables and type declarations that were present in func.c have been redeclared to be of type DERIV_TYPE. DERIV_val denotes the original double value for each variable of type DERIV_TYPE. DERIV_grad denotes the vector of total derivatives with respect to the chosen independent variables (we will call it a gradient in the sequel) that is associated with an original double variable. ADIC also generates an include file ad_deriv.h that instantiates these macros as shown in Figure 5.

\footnote{The code has been reformatted slightly for inclusion here.}
#include <math.h>
typedef struct fooelement {
 double *value_ptr;
 char tag;
} footype;

double func(footype *a, double b, double x[], int n)
{
 double r,t; int i;
 r = 1.0;
 for (i = 0; i < n; i++) {
 t = (*a->value_ptr)*x[i]*b;
 if (t >= 0.0) {
 r *= sqrt(t);
 }
 }
 return r;
}

Figure 2: File func.c containing function func.

Here ad_GRAD_MAX is a compile-time constant indicating the maximum number of derivatives to be computed (the actual number of derivatives desired up to the maximum is determined at runtime). ADIC generates a different instantiation of these macros depending on the mode of operation. The func.ad.c code shows that ADIC also changed the call interface to return the original double result through a new parameter; this step avoids unnecessary copying of data due to the return value having been turned into a structure. Calls to func in other files submitted to ADIC would have been changed accordingly.

We also mention that casts from float to nonfloat are handled by just casting the DERIV.val part, casts from nonfloat to float are handled by assigning by DERIV.val the cast of the nonfloat, and assigning a zero gradient to DERIV.grad.

Derivative Code Generation. Conceptually, the strategy for computing first-order derivatives as shown is the same one that currently underlies ADIFOR [11, 12] and thus allows the same flexibility with respect to “derivative seeding” to compute selected derivatives, chain derivatives, or exploit derivative sparsity that is described in these references.

In particular, we use the forward mode overall at the level of statements, but use the reverse mode within an assignment statement. Control flow of the derivative program thus mirrors that of the original code. For each assignment we compute the derivatives of the left-hand side of the assignment with respect to a particular variable on the right-hand side of the assignment. For example, ad_loc_0, ad_adj_0, and ad_adj_1 computed in lines 2,
```c
#include "ad_deriv.h"
#include <math.h>
#include "adintrinsics.h"

typedef struct fooelement {
  DERIV_TYPE *value_ptr;
  char tag;
} footype;

void ad_func(DERIV_TYPE *ad_var_, footype *a,
             DERIV_TYPE b, DERIV_TYPE x[], int n) {
  double ad_loc_0, ad_loc_1;
  double ad_adj_0, ad_adj_1, ad_adj_0;
  DERIV_TYPE ad_var_0, r, t;
  int i;
  static int g_filenum = 0;
  if (g_filenum == 0) {
    adintr_ehsfid(&g_filenum, __FILE__, "func");
  }
  ad_grad_axpy_0(DERIV_grad(r));
  DERIV_val(r) = 1.0;
}
```

Figure 3: First part of file func.ad.c containing function ad_func as generated by ADIC.


```c
for (i = (0); i < n; i++) {
    ad_loc_0 = DERIV_val( *a->value_ptr) * DERIV_val(x[i]);
    ad_loc_1 = ad_loc_0 * DERIV_val(b);
    ad_adj_0 = DERIV_val( *a->value_ptr) * DERIV_val(b);
    ad_adj_1 = DERIV_val(x[i]) * DERIV_val(b);
    ad_grad_axpy_3(DERIV_grad(t), ad_adj_1, DERIV_grad(*a->value_ptr),
                   ad_adj_0, DERIV_grad(x[i]),
                   ad_loc_0, DERIV_grad(b));
    DERIV_val(t) = ad_loc_1;
    if (DERIV_val(t) >= 0.0) {
        DERIV_val(ad_var_0) = sqrt(DERIV_val(t));
        if (DERIV_val(t) > 0.0) {
            ad_adj_0 = 1.0 / (2.0 * DERIV_val(ad_var_0));
        }
        else {
            adintr_sqrt(i, g_filenum, __LINE__, & ad_adj_0);
        }
        ad_grad_axpy_1(DERIV_grad(ad_var_0), ad_adj_0, DERIV_grad(t));
        ad_loc_0 = DERIV_val(r) * DERIV_val(ad_var_0);
        ad_grad_axpy_2(DERIV_grad(r), DERIV_val(ad_var_0), DERIV_grad(r),
                       DERIV_val(r), DERIV_grad(ad_var_0));
        DERIV_val(r) = ad_loc_0;
    }
    ad_grad_axpy_copy(DERIV_grad(*ad_var_), DERIV_grad(r));
    DERIV_val(*ad_var_) = DERIV_val(r);
    return;
}
```

Figure 4: Second part of file `func.ad.c` containing function `ad_func` as generated by ADIC.

```c
typedef struct {
    double value;
    double grad[ad_GRAD_MAX];
} DERIV_TYPE;
#define DERIV_val(a) ((a).value)
#define DERIV_grad(a) ((a).grad)
```

Figure 5: Partial listing of file `ad_deriv.h` generated by ADIC.
4, and 5 of Figure 4 corresponds to \(\frac{\partial t}{\partial b}, \frac{\partial t}{\partial x[i]}, \) and \(\frac{\partial t}{\partial \text{a->value_ptr}}, \) respectively. The call to the \texttt{ad_grad_axpy_*} routines denotes a vector linear combination; for example, the \texttt{grad_axpy_3} invocation on lines 6 to 8 of Figure 4 corresponds to

\[
\text{DERIV_grad(t)} = \text{ad_adj_1} \times \text{DERIV_grad(*a->value_ptr)} \\
+ \text{ad_adj_0} \times \text{DERIV_grad(x[i])} \\
+ \text{ad_loc_0} \times \text{DERIV_grad(b)};
\]

This is a particular instantiation of the chain rule, namely,

\[
\nabla t = \frac{\partial t}{\partial z} * \nabla z + \frac{\partial t}{\partial x[i]} * \nabla x[i] + \frac{\partial t}{\partial b} * \nabla b,
\]

where \(z \) denotes the value of \(*\text{a->value_ptr}\.\)

The use of \texttt{DERIV_grad}, \texttt{DERIV_val}, \texttt{DERIV_TYPE}, and \texttt{grad_axpy_*} provides abstraction as well as considerable flexibility in how to associate a gradient with a memory location containing a double (this issue is explored in more detail in Section 3.1), what data structures to use for implementing a derivative object, and how to implement the vector linear combination with the chosen data structure.

For example, we can provide the \texttt{ad_grad_axpy_3} functionality through either a macro or a function call. This is shown in Figures 6 and 7. The \texttt{ad_grad.h} file included in \texttt{ad_deriv.h} supplies the appropriate macro definitions or external declarations. There may also be several implementations of the functions, each tailored to a particular type of problems. The decision on which approach to use can be deferred to compile or link time.

```
#define ad_grad_axpy_3(gz, ca, ga, cb, gb, cc, gc) {\n  int g_i_;\n  for (g_i_ = 0; g_i_ < DERIV_SIZE; g_i_++) {\n    gz[g_i_] = + (ca)*ga[g_i_] + (cb)*gb[g_i_] \n    + (cc)*gc[g_i_];
  }\n}\n```

Figure 6: Macro instantiation of \texttt{ad\_grad\_axpy\_3}.

**Handling Intrinsics.** The \texttt{sqrt(x)} intrinsic function is not differentiable when \( x \) equals zero. To alert the user to such an occurrence, ADIC checks for this occurrence and prints a warning message. The file \texttt{adintrinsics.h} that is included in line 3 in Figure 3 provides definitions for the \texttt{adintr\_ehsfdi} (line 20 in Figure 3) and \texttt{adintr\_sqrt} (line 16 in Figure 4)
functions that set up an error handler for this file and report the occurrence of sqrt(0), respectively. The latter function also provides a reasonable default value for the local partial derivatives (e.g., ad_adj0) so that the execution can proceed. These functions are part of an ANSI-C instantiation of the ADIntrinsics subsystem [13]. While most of the time the evaluation of an intrinsic at a point of nondifferentiability does not compromise the overall result, subtle issues may arise whose satisfactory solution does depend on the particular application context [9, 14].

2.2 The ADIC Process

In this subsection, we explain in more detail how the ADIC process relates to the generic anatomy of an AD tool briefly outlined in subsection 1.3. The automatic differentiation process with ADIC is shown in Figure 8. The user submits the code to be differentiated, as well as optional control scripts. The control scripts may indicate optional configuration items such as the prefix that is used to generate new file and function names (all the examples in this article use “ad_” as the prefix) or decide whether to inline certain utility functions to improve performance but at the expense of code expansion. For more details, see [17].

Transforming Using ADIC. The ADIC translator generates the derivative code from the code submitted by the user and consists of four components:

- Preprocessor: The preprocessor processes the C preprocessor directives and expands macros embedded in the source code. It also marks up the source code so that some of the original C preprocessor directives and macros can later be recovered. These issues are further discussed in Subsection 3.4.

```c
void grad_axpy_3(double* dest, double adj_1, double* grad_1,
 double adj_2, double* grad_2,
 double adj_3, double* grad_3)
{
 int i;
 for (i = 0; i < DERIV_SIZE; i++) {
 dest[i] = adj_1 * grad_1[i] + adj_2 * grad_2[i]
 + adj_3 * grad_3[i];
 }
}
```

Figure 7: Subroutine instantiation of ad_grad_axpy_3.
Figure 8: Generating derivative code with ADIC.
Main Processor and AIF Modules: This part of the system is our specific instantiation of the generic AD translator shown in Figure 1. We discuss it in more detail below.

Postprocessors: A postprocessor provides the ability to perform a further textual transformation on the generated source. For example, one postprocessor may inline certain calls using templates. Another postprocessor that is routinely used is `purse-c`, a component of the ADIntrinsics system.

The ADIC main processor and the AIF modules perform the following functions:

- **Parsing:** The marked-up source files are parsed into an intermediate form. To this end, we employ the Sage++ [22] parser.

- **Canonicalization:** At this stage, we canonicalize the intermediate form by addressing ANSI-C-specific issues such as side-effects and pointers. The subtle issues arising in this context are described in Section 3.

- **Analysis:** ADIC currently does not employ data flow or dependence analysis for improving derivative generation. In particular, unlike ADIFOR, ADIC does not perform an interprocedural data flow analysis to determine which variables need to be active, but makes the conservative assumption that all variables are active. Pointer analysis of ANSI-C programs remains an active research area (see, e.g., [43, 47, 53]); in the future we hope to be able to assimilate emerging tools from the compiler community to provide some of these capabilities.

- **Derivative Augmentation:** ADIC’s current default strategy is the forward mode. However, as shown in [19, 21, 38], considerable improvements can be obtained by varying strategies at lower levels within a code. To enable this, we identify code fragments that can be mapped to the simple language underlying the AIF abstraction. As will be shown in Section 4, at the very least assignment statements can be abstracted into AIF, allowing, for example, the statement-based hybrid derivative generation approach underlying the example in Section 2.1. AIF code fragments are augmented with derivative computations based on the strategies present in the AIF modules.

- **Optimization:** Since ADIC inserts derivative computations into the code, we know a lot about the resulting code. Thus, we are in a position to potentially communicate a fair amount of information to code restructuring systems aimed at generating codes tuned for a particular architecture.

- **Unparsing:** We unpars the intermediate form (represented as a combination of AIF and Sage++ intermediate form) to legal ANSI-C code.
Linking with ADIC Runtime Libraries. After the derivative code is generated, it may need to be linked with the following runtime libraries.

- **Libraries Invoked by AIF Modules**: Automatic differentiation programs rely heavily on kernels that implement the vector or matrix operations that are implied by the chain rule. Typically these kernels are provided both as macros and as library functions (e.g., \texttt{ad\_grad\_axpy\_3} from Figure 7).

- **SparsLinC**: SparsLinC (Sparse Linear Combination Library) provides implementations of vector linear combinations such as \texttt{ad\_grad\_axpy\_3} with data structures that are suitable when the gradients are large and contain many nonzero entries. In this case, SparsLinC provides a much more suitable implementation than the dense loops shown in Figures 6 and 7. SparsLinC, which is written in ANSI-C, was originally developed in the context of the ADIFOR project and has been successfully employed in large-scale nonlinear modeling [10, 16, 21, 18]. Since SparsLinC employs dynamic data structures, from a user's perspective it allows the exploitation of derivative sparsity without any \textit{a priori} knowledge of the sparsity structure in a transparent fashion.

- **ADIntrinsics**: The ADIntrinsics system provides (1) a reasonable default behavior for all cases where the derivative of a standard C intrinsic is not defined and (2) an error-reporting mechanism that gives users control over the amount of detail reported when exceptions do occur. To compute the elementary derivative of an intrinsic function, the ADIC main processor inserts a call to an \textit{intrinsic template} function. The \texttt{purse-c} postprocessor expands the template call into an appropriate C code, depending upon the error-reporting level desired. A set of user-extensible templates files provide the blueprints for expanding the template calls. Finally, the error handler library provides a collection of routines used to record and report runtime errors and to change certain default values.

Writing and Linking the Driver. The user provides a driver that specifies, at runtime, the input variables with respect to which derivatives actually need to be computed. In fact, with proper initialization, we can compute \textit{directional} derivatives (this process is termed "derivative seeding;" see [11, 12]).

We show a simple driver for \texttt{func.ad.c} (from Figures 3 and 4) in Figure 9. Variables that used to be of type \texttt{double} are now declared to be of type \texttt{DERIV\_TYPE}, and their values are referred to via the \texttt{DERIV\_val} macro. The \texttt{ad\_AD\_SetIndepArray} utility function sets up \texttt{size} elements of array \texttt{x} as independent variables. The \texttt{ad\_AD\_SetIndep} utility sets up a scalar variable as independent variable. The \texttt{foo->value\_ptr} variable is set to point to the last element of \texttt{x}; hence there is no need to explicitly initialize its gradient (this initialization was chosen to demonstrate the fact that aliasing does not present a problem).
```c
#include <stdio.h>
#include <stdlib.h>
#include "ad_deriv.h"

typedef struct fooelement { DERIV_TYPE *value_ptr; char tag; } footype;

void ad_func(DERIV_TYPE *result, footype *, DERIV_TYPE, DERIV_TYPE [], int);

int main() {
 footype foo; DERIV_TYPE bias, *x, result; int i, j, size;

 ad_AD_Init(); /* Initialize AD Data Structures */
 /* Allocate and read in vector x. */
 /* Initialization to make derivatives numbered 0, .., size-1 */
 /* correspond to derivatives w.r.t. x[0], ..., x[size-1] */
 scanf("%d", &size); x = (DERIV_TYPE *) malloc(size*sizeof(DERIV_TYPE));
 for (i = 0; i < size; i++) { scanf("%le", &DERIV_val(x[i])); }
 ad_AD_SetIndepArray(x, size);

 /* Read in bias. Initialization to make derivative numbered */
 /* size correspond to derivative w.r.t. bias */
 scanf("%le", &DERIV_val(bias));
 ad_AD_SetIndep(bias);

 foo.value_ptr = x+size-1; /* No need to initialize gradient of */
 foo.tag = 'c'; /* foo since it is an alias */

 ad_AD_SetIndepDone(); /* Done nominating independent var's. */

 ad_func(&result, &foo, bias, x, size);

 ad_AD_ReportExceptions(); /* Check for AD Intrinsic Exceptions */

 /* Print value and derivatives of result */
 printf("result is %e\n", DERIV_val(result));
 for (i = 0; i < ad_AD_GetTotalGradSize(); i++) {
 printf("g_result(%d) = %e\n", i, DERIV_grad(result)[i]);
 }

 ad_AD_Final(); /* Clean up AD Data Structures */
}
```

Figure 9: A driver for func.ad.c from Figures 3 and 4.
The call to \texttt{ad\_func} then computes the derivatives of \texttt{result}, the result of the original function, with respect to the entries of \texttt{x}. The \texttt{ad\_AD\_ReportExceptions} utility prints a summary of exceptions that occurred evaluating ANSI-C intrinsics such as \texttt{sqrt()}. The \texttt{ad\_AD\_GetTotalGradSize} utility returns the total number of derivatives that currently are computed (size + 1 in our example). Entries 0, ..., size-1 of \texttt{DERIV\_grad(result)} are derivatives with respect to \texttt{x[0]}, ..., \texttt{x[size-1]}, \texttt{DERIV\_grad(result)[size]} is the derivative with respect to \texttt{bias}.

3 Handling the C Language

In this section, we focus on the fundamental issues that must be resolved to enable the automatic differentiation of computer programs and illustrate them with examples from the C language. Automatic differentiation is a particular instantiation of a semantic augmentation process that inserts additional computations related to the part of the program that deals with floating-point numbers. We can view the “derivative space” as an additional address space containing \textit{derivative objects} (e.g., first, second, or higher-order derivatives). The access patterns of the derivative space conceptually mirror those of the original program, in that whenever a floating-point value is changed, we need to update the derivative associated with that value in an analogous fashion. If we let the term a “float object” denote a memory location that holds a floating-point variable, then the above informal statement suggests that we need to be concerned about three issues:

\textbf{Derivative Object Association:} We need to be able to find, for a given float object, its associated derivative object.

\textbf{Side Effects:} To be able to do analogous actions in the derivative world, we need to be able to repeatedly refer to subexpressions representing indices and addresses. Thus, we need to isolate side effects to make this possible.

\textbf{Expressivit y:} Complex operations may be represented in a compact form (e.g., \texttt{if ((c=a) \linebreak || (d=c=b))} \{ ... \}). When augmenting the code, the derivative generation process must respect various syntactic limitations; for example, we cannot simply insert statements to update derivatives inside the control expression.

We will address these issues in the next subsections.

An important practical issue is the portability of the code generated by ADIC. Many implementation details of the ANSI-C standard are platform dependent; see, for example, the function and data structures in \texttt{<stdio.h>}. Thus, for ADIC to be usable as a cross-translator, we need to retain some of the C preprocessor directives and macros embedded in the original source code whose expansions, however, are necessary to parse (understand) the program. In the last subsection we briefly discuss issues that arise from C’s preprocessing.
3.1 Derivative Object Association

In C, float objects may be created either explicitly (through variable declarations or dynamic memory allocation) or implicitly (through function returns or by casting). An lvalue is simply an expression that, when evaluated, describes a float object; examples from Figure 2 are *a->value_ptr, x[i], and b.

For automatic differentiation to work, we must be able to associate a unique derivative object with each float object used in a computation. The lifetime of the derivative object must be at least that of its associated float object; if two float objects have non-overlapping lifetimes, the same derivative object might be used for both to save space.

This association is rendered difficult by aliasing, that is, two different lvalue expressions may refer to the same float object. Thus, choices of association schemes are fundamentally determined by our ability to resolve aliasing. If we can statically resolve aliasing (as, for example, in Fortran 77), we can trace each lvalue expression back to the point of declaration of the float object denoted by it, and thus we may associate a float object and its derivative object by name; for example, we associate a vector g.x(:) with the variable x. If x and y are aliases of each other, we also alias g.x and g.y. Such an approach is taken by ADIFOR [11, 12].

This approach is generally not feasible for C, however, because of the unrestricted use of pointers. Nevertheless, since an lvalue expression evaluates to a unique address, we can use the address as the basis of an association scheme. That is, for any float object x and its associated derivative object ∇x, we choose &∇x = F(&x), where F specifies a mapping function and & represents the address of an object. Implicit here is the ability to use &x twice—once in the context of the original program, and another time to determine the location of its associated derivative object. This is a problem for implicitly created float objects, which are accessible only once at their creation. ADIC handles this during the canonicalization stage by creating a temporary and copying the implicit float object to it. Figure 10 shows an example. Since ADIC knows that the extent that such a temporary (as well as the ad temporaries used in the derivative code) is live, it can recycle these temporaries so that even for a large code, the number of additional temporaries that need to be allocated typically is quite small.

The easiest way to implement the by-address association scheme was illustrated by the example in Section 2.1, where the floating-point variables were changed to structures containing the original value and a fixed-size array for the associated derivative object (see Figure 5). Here the mapping is very simple: \( F(&x) = &x + c \) for some constant \( c \).

As a variant of this method, instead of storing the derivative object directly in the structure itself, we may store only a pointer to the derivative object, as shown in Figure 11. This approach is necessary if we want to use dynamic data structures such as those used by SparsLinC. In addition, this scheme allows memory savings through lazy allocation of derivative objects, and computational savings through special representations of vectors.
Original Code:

```
unsigned long get_information (int key);
double x, y;
int key;

y = x * (double) get_information (key);
```

Canonicalized Code:

```
unsigned long get_information (int key);
double tmp, x, y;
int key;

tmp = (double) get_information (key);
y = x * tmp;
```

Figure 10: Implicit float object represented by the cast expression is made explicit by saving it to a temporary.

```
struct DERIV_TYPE {
 double value;
 derivative_structure* grad;
};
```

Figure 11: Different methods of associating a gradient vector by modifying float types.
that are all zeros (e.g., through a NULL pointer). Note that with this approach, pointer arithmetic with doubles naturally turns into pointer arithmetic with derivative objects. The major difficulty with this approach lies in the prevention of memory leaks—all allocated derivative objects must be deallocated when the associated float objects are deallocated or goes out of scope. This is possible if we can statically determine the lifetime of a float object, but is generally impossible to resolve automatically for dynamically allocated memory which can potentially be freed anywhere in the program. We are developing a mechanism for dealing with potential memory leaks via user directives. In this context, garbage collection mechanisms such as the one described in [23] may play a useful role.

This approach of redefining double in the derivative code cannot be used, however, in the following circumstances:

- We cannot statically determine that a particular memory location will be used to house a double. While we expect that a programmer would write `malloc(k*sizeof(double))`, which allows us to adjust the memory allocation, a call to `malloc(1024)` and a cast to a `double*` somewhere later in the program are also possible.

- A data structure containing a double cannot be changed for a variety of reasons—it may be a memory-mapped I/O port, or it may be used by an additional code linked with the derivative code. This issue may be resolved by retaining both the original and augmented data structures and copying values back and forth as needed.

At this point, ADIC employs the schemes shown in Figures 5 and 11, but without addressing the memory leak question associated with the latter. We are working on an associative scheme that does not modify the original data structure, to avoid the need for duplication of data structures. The associative map is based on a dynamic data structure that tries to take advantage of the locality of data accesses. This is the most expensive approach, but it is always feasible. Our goal is to develop an infrastructure for ANSI-C that allows us to correctly augment arbitrary programs and to use a combination of static analysis and user directives to adaptively choose the least expensive approach. We also note that a lot of the issues that are troublesome would not arise in a language like Java which has built-in garbage collection and strict type conversion rules.

### 3.2 Handling Side Effects

For the derivative augmentation process to work, float objects and their associated derivative objects must be accessed in the same fashion. Side effects obstruct this “parallel” behavior. As a simple case, consider `x[i++] = y[i]`. If we simply substitute the lvalue `x[i++]`, e.g., refer to `DERIV_val(x[i++])` and `DERIV_grad(x[i++])`, these references refer to different variables. Thus, we need to rewrite the code to ensure that lvalues referring to float objects are free of side effects.
To this end we evaluate all lvalues that may cause side effects only once by hoisting them out of expressions during the canonicalization stage. We make sure that the transformations do not change the semantic meaning of the program. Figure 12 shows an example for an autoincrementing address.

Original Code:
```c
data[i++] *= scale;
```

Canonicalized Code:
```c
data[i] *= scale;
i++;
```

Figure 12: Handling side effects

Figure 13 shows another example where an lvalue expression on the left-hand side contains a function call (with potential side effects). The function returns a pointer to a `double`, which is then dereferenced. Essentially any action can occur in a function, so there is no hope of “understanding” the side effects, as in the previous cases. Since the function’s immediate result (before being dereferenced) is being used only as a value, not as a storage location, this value can be hoisted to a temporary.

Original Code:
```c
(*f(x)) /= y;
```

Canonicalized Code:
```c
t1 = f(x);
(*t1) = (*t1) / y;
```

Figure 13: Example of hoisting a function call with potential side effects

3.3 Expressivity

The C language provides a rich set of operators and syntactic constructs to compactly describe computations. This compactness makes the automatic differentiation process more difficult by hiding access to certain values. For example, in statement `y *= x`, the variable `y` plays two roles: its original value appears on the right-hand side of the assignment, and
it is a value that will be modified after the operation. In this particular case (see also Figure 13), rewriting it into \( y = y + x \) is sufficient.

<table>
<thead>
<tr>
<th>Original Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (z = 0.0; func(z) &gt; 1.0; z += 2.0) {</td>
</tr>
<tr>
<td>[...]</td>
</tr>
<tr>
<td>if (k) {</td>
</tr>
<tr>
<td>continue;</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>[...]</td>
</tr>
<tr>
<td>}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canonicalized Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>z = 0.0;</td>
</tr>
<tr>
<td>for (; func(z) &gt; 1.0;) {</td>
</tr>
<tr>
<td>[...]</td>
</tr>
<tr>
<td>if (k) {</td>
</tr>
<tr>
<td>goto label;</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>[...]</td>
</tr>
<tr>
<td>label:</td>
</tr>
<tr>
<td>z += 2.0;</td>
</tr>
<tr>
<td>}</td>
</tr>
</tbody>
</table>

Figure 14: The loop is rewritten before the derivative augmentation step.

However, things may not be as simple. Consider, for example, the code fragment labeled “original code” in Figure 14. The upper part of Figure 14 shows a loop that contains a continue statement. When the continue statement is executed, the execution immediately skips to the next iteration by executing the iterative expression \((z += 2.0)\) and then performs the loop test. Since we cannot add statements that perform derivative computations inside the expression part of the loop statement, we hoist the initial expression of the for loop out of the loop and the iterative expression to the bottom of the loop. To preserve the original semantic, we change the continue into a goto. Hence, ADIC rewrites the computation to make all operations explicitly visible as is shown in the part labeled “canonicalized code” in Figure 14. If the lower bound or increment expressions contains side effects, they would be further treated as previously described.

Another potential problem arises from C operators that have implicit control flow. For example, the logical OR operator in \((a=x) \lor (b=x)\) will short-circuit (i.e., not execute
Original Code:
```
if (((a == b) == x) || ((a == c) == y)) {
 x = k;
}
```

Canonicalized Code:
```
int flag;
[...]
a = b;
if (a == x) {
 flag = TRUE;
}
else {
 flag = FALSE;
 a = c;
}
if (flag == TRUE || a == y) {
 x = k;
}
```

Figure 15: Implicit control flow operations are made explicit.
the second assignment), if the first assignment expression is nonzero. When propagating
derivatives, the derivative code must behave accordingly. As shown in Figure 15, ADIC
rewrites the code during the canonicalization phase to make the control flow explicit and
isolates the $a = c$ side effect.

3.4 Preprocessor Issues

The C preprocessor expands macros and handles other directives embedded in the source.
The portability and flexibility of C programs stem in part from this preprocessing facility.
Unfortunately, this flexibility can significantly complicate source-to-source transformation
systems, since directives and macro usage will be lost in the preprocessed source file.

In most instances, no problem results. However, in some instances such a capability
is very useful. To this end the pre-processor component of ADIC provides the following
facilities:

- **include** directives typically are used to include the contents of the standard or user
  header files into the source. Since the included standard headers (like `<stdio.h>`
or `<math.h>`) are determined at transformation time, the transformed source is not
  portable across platforms. To handle the include directives, ADIC marks up the
  locations of any included text and stores the names of the original header files. When
  ADIC generates the augmented source, the entire contents of the standard headers
  (which are needed during the augmentation process) are replaced with the original
directives. ADIC also provides an option to restore the user include directives.

- A macro can represent any text. A function-like macro can also take arguments,
  performing argument substitutions during the preprocessing stage. Wherever the
  macro name occurs in the source, it gets expanded. The expanded macros may not
  be portable across machines or even across compilers, since they may be system
  dependent (e.g., `FILE` defined in `stdio.h`). ADIC allows the user to specify macros
  that should not be expanded through its control file mechanism. This facility can also
  be used to handle function-like macros and type definitions.

These preprocessor issues are discussed in more detail in [17].

4 AIF – The Automatic Differentiation Intermediate Form

The preceding sections discussed how to prepare an ANSI-C code for derivative augmen-
tation. In this section, we discuss the mechanism for achieving this augmentation. As
mentioned previously, automatic differentiation is a field in its infancy. Hand-translation
schemes (for small codes) have shown the promise of going further beyond either the tradi-
tional forward and reverse modes or the static hybrid scheme used in ADIFOR. However,
changing the underlying AD approach typically implied considerable effort, since the implementations of AD algorithms in existing AD tools are deeply tied to the implementation infrastructure of a particular tool. Thus, these implementations of AD algorithms suffer from two limitations.

**Lack of Abstraction:** From the perspective of an AD algorithm, the two assignment statements

\[
z = 2.0 + x \times y \\
\text{foo-}>\text{struct.z} = 2.0 + \text{bar-}>x \times q[c]
\]

are identical in that both represent

\[
\text{var}_1 = \text{const} + \text{var}_2 \times \text{var}_3
\]

where \text{var}_1 \text{ is a floating-point variable, and const is a constant.}

**Lack of Portability:** AD algorithms augment only the floating-point computations of a program and are, except for the purpose of static analysis, oblivious of the remainder. Thus, as suggested by the algorithmic commonality of ADIFOR and ADIC, there is much scope for bringing the very same algorithms to bear on both Fortran and C codes, for example. However, previously this meant replication of the coding effort in both language contexts, although libraries such as SparsLinC could be shared.

Concurrent with the development of ADIC, we have developed AIF (automatic differentiation intermediate form) to provide an infrastructure that allows experimentation with AD algorithms in a language-independent fashion and promotes software reuse. We defined a simple language for AD to which we can map program fragments written in languages such as C and Fortran. The AIF language has the usual notion of functions, statements, and expressions. It defines canonical forms of various control flow constructs such as loops and conditionals available in most high-level languages. In addition, it defines several data types (e.g., integer, double-precision float) and the usual arithmetic operators. Our goal is not to make it so feature-rich that it ends up being a full C/Fortran intermediate form but, rather, provide a useful set of canonical language features to enable us to map fragments of programs. Since many constructs are not relevant in the AD context, the AIF language also defines a NO-OP expression and statement, which are not interpreted and serve only as placeholders (used to map back into the original language). Hence, many low-level notions are either abstracted away (e.g., \text{foo-}>\text{struct.z} becomes \text{VAR_T}, denoting the reference to a variable) and code fragments such as \text{a | b} that do not affect automatic differentiation are hidden inside a NO-OP placeholder.

For a given input C or Fortran program, then, we can map it into a set of AIF code fragments. The size of each fragment depends on the particular structure and well-behavedness
of the program; but at the least, we can convert a single statement at a time (e.g., a function call or assignment) into AIF. A derivative module takes an AIF code fragment and augments it with derivative computations according to the strategy built into the module. Hence the derivative module works at the abstract level of the program fragments. The main tool (called the host) then glues these augmented fragments together to form the final derivative code. A simpler derivative module may handle only a statement fragment at a time, whereas a more sophisticated module may handle a basic block or an even larger fragment. Hence, depending on the sophistication of a particular derivative module, we may need to tailor the size of AIF fragments to be no greater than what the module can handle. Generally, the larger the code fragment, the more sophisticated the AD algorithms that are potentially applicable.

The mechanism just described is used by ADIC to perform the derivative augmentation. We have built a gradient module for first-order derivatives, and we are working on a hessian module for second-order derivatives [2]. These modules process one statement fragment at a time. Each derivative module is a separate executable program that communicates with the host via files. In addition to the AIF code fragments, the standard application programming interface (API) also defines a channel for passing meta-information between the derivative modules and the host. For example, the host may pass along some information about the program (e.g., that its variables are guaranteed not to be aliased), or the derivative module may notify the host that certain additional files (e.g., headers or libraries) are required to compile the generated AIF code fragment.

With regard to implementation, both the AIF code fragments and controls are represented as annotated abstract syntax trees (AST's). The AST is represented in a child-sibling relationship—the down link of a node represents its first child, and the right link of the node represents its right sibling. Each node may contain one or more attributes that specify additional information about the node. AIF defines a standard set of these attributes but is fully extensible. Various data flow facts (e.g., def-use chains) can also be embedded into AIF trees as attributes. As AIF develops, we expect to further define a standard set of attributes for expressing data flow and dependence information. ADIC also uses additional attributes to store low-level information associated with a node (for example, a pointer to a symbol table entry), which are ignored by the derivative modules. A document describing AIF in detail is in preparation.

As an illustration, an assignment \( a = b \times c \) is converted into AIF to be sent to the gradient module. Figure 16 shows the AIF in graphical format. In the figure, the italicized words represent attributes and their values. The BIND.T node has various attributes that represent the API requests from the host. In this case, we specify the AIF language version, the AD transformation desired (first-order derivatives), the prefix \( \text{ad} \) used in naming auxiliary variables, as well as the fact that we do not want to inline gradient calls, that we want to compute at most five directional derivatives. The ASSGN.T denotes an assignment, VAL.T denotes the reference to a value, VAR.T denotes a floating-point variable, and MUL.T denotes
Figure 16: Input AST representing the assignment \( a = b \times c \) for processing by the gradient module.

The multiplication. The NAME_A attributes of VAR_T are actually pointers to an internal data structure that identifies the variable.

The gradient module then transforms this representation into a new AIF fragment that also contains derivative computations, as shown in Figure 17. The new AIF fragment represents the statements

\[
\begin{align*}
    \text{ad}_{-}\text{loc}_{-}0 &= \text{DERIV}_{-}\text{val}(b) \times \text{DERIV}_{-}\text{val}(c); \\
    \text{ad}_{-}\text{grad}_{-}\text{axpy}_{-}2(\text{DERIV}_{-}\text{grad}(a), \text{DERIV}_{-}\text{val}(c), \text{DERIV}_{-}\text{grad}(b), \\
        &\quad \text{DERIV}_{-}\text{val}(b), \text{DERIV}_{-}\text{grad}(c)); \\
    \text{DERIV}_{-}\text{val}(a) &= \text{ad}_{-}\text{loc}_{-}0;
\end{align*}
\]

The BIND_T node specifies various declarations and also the return API requests from the module. The attribute-value pair

\[
\text{AD_CONST ad}_{-}\text{GRAD}_{-}\text{MAX} = \text{type=integer default=5 shape=scalar}
\]

specifies that an integer constant named ad\_GRAD\_MAX be declared with the default value of 5. The attribute-value pair

\[
\text{AD_TYPE loc = scope=local type=float shape=scalar}
\]

represents a type declaration that specifies that all local names that begin with !!loc are to be properly declared as double and to have local scope. The prefix !! is used to distinguish module generated variables from the original program variables. The local scope specification is just a hint to the host that the usage of the variable will be limited to the local code block and therefore the variable name can be recycled afterwards. The LOC_T node corresponds to the use of such a temporary variable (identified with the name
Figure 17: Output AST after processing by the gradient module.
The attribute-value pair

\[ \text{AD_DERIV}_\text{grad} = \text{type}=\text{float}, \text{shape}=\text{array}, \text{ad}_\text{GRAD}_\text{MAX} \]

specifies that a derivative object (associated with all floating-point variables) named \text{grad} be defined as an array of \text{ad}_\text{GRAD}_\text{MAX} doubles. The \text{AD_HEADER} attribute specifies the name of the header file to be included in \text{ad_deriv.h}. The \text{STMTS_T} node represents a statement block containing the two assignments and a call. A \text{DERIV_T} node indicates the reference to a derivative object named \text{grad} associated with a particular float variable. The \text{VARS_A} attribute of \text{STMTS_T} summarizes the new local variables that have been requested by the \text{gradient} module in a statement block. The \text{NO_SIDE_EFFECT_A} attribute of \text{CALL_T} specifies that we know the call to \text{ad_grad_axpy_3} to be free of side effects. These attributes provide useful information when further transformations, such as optimizations, are to be performed.

This example illustrated the following features of AIF:

**Abstraction:** By abstracting away language-specific ways for referring to float objects, we arrived at a much simpler representation of the program. Also, we could easily refer to “gradients associated with a particular float value” or “local variables” without concern for the actual implementation of these concepts.

**Language Independence:** The AIF language does not prescribe how variables need to be allocated or how derivative associations need to be maintained. Instead, the use of a standard API provides a language-independent way to request information or services between modules and hosts. Thus, the AIF representation tries to provide a platform for experimentation with AD algorithms, allowing, for example, the interfacing of the same AIF derivative module to different AD front-ends.

**Flexibility:** Instead of the \text{gradient} module, we could have easily invoked a different module, for example, the \text{hessian} module, in which case the augmented AIF would compute the second-order derivatives. In fact, a given module may perform context-sensitive transformations rather than the same transformation algorithm to every statement, but the change of algorithms is transparent to the surrounding tool layers (see, for example, [2]).

To assist developers in writing AIF modules, we have created a toolkit that provides a library of C++ classes insulating the developer from various interfacing issues and provides the AST node definitions, the attribute mechanism, and a set of tree manipulation routines in addition to various utilities. The library takes care of encoding and decoding the API and transparently handles communication with the invoking tool via files. Even though the derivative generation speed is currently not a factor, the toolkit does provide for direct linking of a module to the host to eliminate the latency associated with file-based communication. However, this change is transparent to users of the AIF toolkit. In our
project, the file-based AIF toolkit interface provided considerable stability to developers of transformation tools, even though the AIF representation itself changed several times. We are doubtful that such development stability could have been achieved if a program representation had been directly manipulated in Scheme [28] or CAML [52].

In summary, AIF allows us to decouple the world of the language-dependent AD frontend and the world of the AD transformation developer (which sees a simple, language-independent representation of program fragments). In this fashion, we hope to accelerate progress in AD algorithms and accelerate the incorporation of new ideas into robust tools.

5 Applications

We present four applications that show that ADIC can be used to reliably augment ANSI-C codes with derivatives. The variety of application domains attests to the generality of automatic differentiation as well as ADIC. All experiments were performed on a Sun SPARCstation 20 running Solaris 2.5 and compiled with gcc. For each problem, we report the runtime of the original (unmodified) code, the ratio between the derivative computation and the original code, (labeled $\frac{\text{time(AD)}}{\text{time(AD)}}$), and the ratio of the runtime of central divided differences to the ADIC-generated code (labeled $\frac{\text{time(CD)}}{\text{time(AD)}}$). Central differences, which usually deliver acceptable derivative approximations, would have required $2p+1$ function evaluations to compute $p$ derivatives. Central difference approximations with varying stepsizes were also used to verify the ADIC-generated derivatives. Since ADIC currently augments all double variables with an array for the gradient object, memory requirements of the ADIC-generated code scale linearly with $p$.

5.1 The CSCMDO 3-D Volume Grid Generator

CSCMDO is a general-purpose, multi-block, three-dimensional, structured volume grid generator with specialized features for grid modifications that occur in multidisciplinary design optimization contexts [39]. It has been used, for example, with the RAPID 2-D surface grid generator [50] and the TLNS3D 3-D CFD solver [51] in design optimization studies at NASA for the high-speed planes.

CSCMDO consists of 16,500 lines of ANSI-C; the unmodified code runs for 49 seconds. As shown in Table 1, ADIC-generated code is faster than central differences, and its advantage improves as the number of derivatives increases. This result is not surprising because the hybrid forward/reverse AD approach used in ADIC incurs a fixed overhead for the scalar reverse mode computations, which it tries to amortize over loops that compute all desired derivatives at once.
Table 1: Timing Results for CSCMDO

5.2 The FCAP2 Circuit Interconnect Simulator

The FCAP (Fast Capacitance Extraction) suite of codes has been under development by Hewlett-Packard Laboratory since the 1980's [25]. These codes are used in the context of simulating capacitance and thermal properties of devices as well as on-chip/off-chip interconnects. They were also incorporated into the Raphael™ capacitance extraction software that is marketed by TMA (Technology Modeling Associate) Inc. FCAP2 consists of 7,680 lines of ANSI-C code.

For our experiments, we use two input models that compute (1) potentials of a couple of trace lines sandwiched between layers of metal planes and dielectrics, and (2) capacitance of five parallel traces between two planes and dielectrics. The runtime for the original code was 6.2 seconds for Model 1 and 7.5 seconds for Model 2.

<table>
<thead>
<tr>
<th># Derivatives</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>time(∇f)</td>
<td>2.9</td>
<td>5.2</td>
<td>7.4</td>
<td>9.2</td>
<td>11.7</td>
<td>13.2</td>
<td>15.0</td>
<td>16.6</td>
<td>18.7</td>
<td>20.7</td>
</tr>
<tr>
<td>time(f)</td>
<td></td>
</tr>
<tr>
<td>time(CD)</td>
<td>1.03</td>
<td>0.97</td>
<td>0.94</td>
<td>0.98</td>
<td>0.95</td>
<td>1.00</td>
<td>1.02</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>time(AD)</td>
<td></td>
</tr>
</tbody>
</table>

Model 1

<table>
<thead>
<tr>
<th># Derivatives</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>time(∇f)</td>
<td>2.3</td>
<td>3.6</td>
<td>5.0</td>
<td>6.2</td>
<td>7.5</td>
<td>8.4</td>
<td>9.6</td>
<td>10.6</td>
<td>11.9</td>
<td>13.1</td>
</tr>
<tr>
<td>time(f)</td>
<td></td>
</tr>
<tr>
<td>time(CD)</td>
<td>1.31</td>
<td>1.38</td>
<td>1.40</td>
<td>1.46</td>
<td>1.46</td>
<td>1.55</td>
<td>1.55</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>time(AD)</td>
<td></td>
</tr>
</tbody>
</table>

Model 2

Table 2: Timing Results for FCAP2

The results in Table 2 show that for the first case, ADIC-generated code is not faster than central difference approximations, while for the second case it is up to 1.6 times faster. These results are due to different execution paths through the code in the two cases (since the derivative code used is identical in both cases). The example shows that, in general, it is somewhat difficult to predict the speedup gained from automatic differentiation. The example also corroborates the need for more context-sensitive differentiation strategies, since the same AD strategy seems to be working better in one case than in the other.
Nevertheless, the main benefit is that AD is guaranteed to deliver correct derivatives. With central differences, for FCAP2, smaller grid sizes (and thus more computations) are often required to achieve the desired level of accuracy, and then ADIC generated code is still a faster solution.

5.3 Stewart Platform

In the design of vehicle simulators, which move around a fair amount to simulate actual driving conditions, one is interested in determining their operational envelope, namely, the set of points in space that could be occupied by the simulator. In the context of such work, we were presented with a model for the so-called Stewart platform (the model derivation is described in [3]). The Stewart platform consisted of 763 lines of code and the unmodified code took 1.7 seconds to complete. The results in Table 3 show that ADIC-generated code is roughly two times faster than central difference approximations throughout.

<table>
<thead>
<tr>
<th># Derivatives</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>time(V/g)</td>
<td>5.5</td>
<td>9.7</td>
<td>14.4</td>
<td>19.2</td>
<td>22.8</td>
<td>28.3</td>
</tr>
<tr>
<td>time(f)</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>time(CD)</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>time(AD)</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 3: Timing Results for Stewart Platform

5.4 Neural Network Model

Our last example is a generic neural network with \( n \) inputs, \( k \) hidden layers, a single output, and sigmoidal activation functions (as described on p. 279 in [40]). The model consists of 73 lines of ANSI-C. The training of these networks gives rise to an optimization problem that requires a gradient of the model for its solution. The data in Table 4 are based on the time for 1000 executions of the model. For this problem, ADIC-generated code is on average 2.4 times faster than central differences.

6 Conclusions

The need for accurate and fast derivatives for models presented as computer codes is ubiquitous in computational science. Automatic differentiation provides a mechanism for computing those derivatives accurately with minimal human effort. In this article, we presented the design and workings of ADIC, a tool for augmenting ANSI-C programs with derivative computations.
Automatic differentiation is a field very much in its infancy. Recent work has shown that AD tools can reliably augment large computer codes, but much work still needs to be done to realize the algorithmic speedups promised by the associativity of the underlying chain rule of differential calculus. The design of ADIC is geared toward accelerating this progress. It combines an ANSI-C-specific frontend with a language-independent AD transformation engine. The ADIC frontend addresses issues such as language canonicalization to make a C code “augmentable” and provide language-specific implementations for abstractions such as “the derivative object associated with a particular variable.” The automatic differentiation intermediate form (AIF), a canonical representation of computer fragments that are relevant for AD, together with the corresponding toolkit, enables programming of the AD transformation engine at a high level of abstraction easily and independent of a particular platform. In addition, this paradigm promotes software reuse.

Application examples have shown that, in its current form, AD for ANSI-C programs as implemented by ADIC already delivers competitive performance in that the runtime of the code generated is typically better than divided difference approximations of derivatives, but no user fiddling with stepsizes is required. Enhancements in underlying AD algorithms will further improve this performance, either through algorithmic improvements in the application of the chain rule or through backend optimizations such as loop unrolling. We also stress that, as illustrated by the example shown, ADIC is easy to use. We only differentiated a toy problem, but since ADIC happily grinds through codes of arbitrary size, processing of a larger code is very similar. The user only need to be concerned with providing a suitable driver, the size of which typically does not depend on the complexity of the code for which derivatives are computed. Information on obtaining ADIC can be found at http://www.mcs.anl.gov/adic.
ADIC already provides some support for C++ codes, and we expect future extensions to handle most of C++ language features including templates and exceptions. C++ also offers additional mechanisms that are useful in producing derivative code. For example, we can use the class constructor/destructor facility to automatically handle allocation/deallocation of derivative objects.

Automatic differentiation tools also offer promising avenues for the application of research typically done in the compiler and runtime system communities, for instance, in flow analysis and performance prediction. As mentioned, for example, in [12, 21], AD provides ample opportunities for exploiting parallelism, from threads in shared-memory programming models (e.g., [41]) to the typically coarser-grained communication paradigms (e.g., MPI [37]) used in distributed-memory paradigms.

Acknowledgments

We thank Jason Abate of the University of Texas at Austin and Alan Carle of Rice University for their insightful comments and Po-Ting Wu of Argonne National Laboratory for his help in debugging ADIC. We are also indebted to William Jones of NASA Langley, Norman Chang of Hewlett-Packard Research Labs, Frederick Adkins of the University of Iowa, and David Juedes of Ohio University for providing us with application problems and assisting us in their operation and verification.

References


[27] Christèle Faure. Splitting of algebraic expressions for automatic differentiation. In Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank, editors, Com-


[38] Paul Hovland, Christian Bischof, Donna Spiegelman, and Mario Casella. Efficient
derivative codes through automatic differentiation and interface contraction: An
application in biostatistics. Preprint MCS-P-491-0195, Mathematics and Computer
Computing, 18(4) (July 1997).

multidisciplinary design optimization. In Proceedings of the Workshop on Surface
NASA-CP-3291.

[40] David W. Juedes and Karthik Balakrishnan. Generalized neural networks, computa-
tional differentiation, and evolution. In Martin Berz, Christian Bischof, George Corliss,
and Andreas Griewank, editors, Computational Differentiation: Techniques, Applica-


[42] Michael Monagan and Rene R. Rodoni. An implementation of the forward and reverse
mode of automatic differentiation in Maple. In Martin Berz, Christian Bischof, George
Corliss, and Andreas Griewank, editors, Computational Differentiation: Techniques,


[46] Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of

for parallelizing compilers. In Proceedings ACM SIGPLAN Conference on Program-
ACM.

[48] Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic differentiation in


